读读吧

手机浏览器扫描二维码访问

第九十八章 牛顿二项式定理(第1页)

1685年,沃利斯(Wallis)出版了《代数》(DeAlgebra),包含了牛顿二项式定理的最早描述。

它也使哈利奥特的卓越贡献为人所知。

二项式定理,是一个a加b的n次方的展开计算。

沃利斯对牛顿说:“你最近在研究什么?”

牛顿说:“二项式定理。”

沃利斯说:“巴斯卡三角,甚至古中国的杨辉三角而已,还有什么好研究?”

牛顿说:“没什么,仅仅是想前进一步。”

沃利斯笑说:“这些东西有用吗?”

牛顿笑着说:“我觉得有很多用,虽看朴素,但里面蕴藏着很多能量。”

沃利斯说:“比如说?”

牛顿说:“我在想开二次方可以计算,就是不断的将小数点后的数字,先写成5,大的让这个数变成4,小了让这个数变成6。

然后一直不断往后写,就可以慢慢的遍历出个无穷的样子。”

沃利斯说:“那又如何,不用二项式,我蒙着这样乘下去不就可以了?”

牛顿说:“开3次,还用这样的办法的话,就困难了,同时开3次以上的话,就更难了。”

沃利斯说:“继续说。”

牛顿说:“我想吧二项式中的n,从整数变成分数来计算。

也可以。”

沃利斯说:“如果是整数,可以有帕斯卡三角,或者是一种组合公式来表示系数。

分数的你该怎么办呢?”

牛顿说:“很容易,把那个组合公式中的n也变成对应的分数,甚至负数都可以。”

沃利斯抬头开始想牛顿说的这个组合公式的变化。

沃利斯开始去写1加x的负一次方的展开,写成了无穷的形式,等于1减去x的平方加x的二次方减x的三次,一直到无穷。

因为组合方程计算出来的是1和-1这两个数字的交替。

x的奇数次方的系数是负一,x的偶数次方的系数是正一。

疑惑的说:“等等,变成负数我还可以想象,变成分数这还用意义吗?”

牛顿说:“为什么没有意义,也没有人规定一定是整数呀,你脑子太死板,不知道其中的奥秘,这里面有很多有趣的数学意义。”

沃利斯也开始尝试的开始写二分之一次方的组合方程,然后带入到1加x的二分之一次方,也写出了看着复杂一些的无穷的级数。

沃利斯看着这个花里胡哨的东西,对牛顿说:“这个东西有作用吗?看着花哨。”

喜欢数学心请大家收藏:(aiquwx)数学心

请勿开启浏览器阅读模式,否则将导致章节内容缺失及无法阅读下一章。

从流民到皇帝,朕这一生如履薄冰  全家逼我离婚,现在后悔有用么  我与仙子不两立  末世降临:我招收下属,获得百倍物资  重生后在前世死对头怀里兴风作浪  重生1961,开局相亲对象就被截胡!  带白月光回家,我离婚你悔啥?  一本杂录  聊天群:开局获得赛亚人血脉  弃我选白月光?我离婚你疯什么!  离婚后,傅先生对她俯首称臣  要离婚你高冷,再婚又发疯?  庆余年:范府大宗师  和扶弟魔老婆离婚后,我送她全家升天  死亡来信  CS:不是,你的残局靠请神啊?  系统盯上龙椅后,公主天天作死  苟在末日,独自修仙  重生79,离婚后知青老婆她后悔了  糟了,那妖女也重生了!  

热门小说推荐
神兵奶爸

神兵奶爸

啥,老子堂堂的漠北兵王,居然要当奶爸?好吧,看在孩子他妈貌若天仙的份儿上,老子勉强答应了...

总裁老公超给力

总裁老公超给力

因为,她是真的很想念他,很想,很想,那股想要他的感觉,也越来越强烈。他们本来是夫妻,在这种事情上根本就没有必要压制。而且,此刻她也只是手受伤了而已...

雪中悍刀行

雪中悍刀行

这个江湖。有武夫自称天下第二一甲子。有剑仙一剑破甲两千六。有胆小的骑牛道士肩扛两道。但一样是这个江湖,可能是江湖儿郎江湖死,才初出茅庐,便淹死在江湖中。可能对一个未入江湖的稚童来说,抱住了一柄刀,便是抱住了整座江湖。而主角,一刀将江湖捅了个透!临了,喊一声小二,上酒...

妖夏

妖夏

盛夏不老不死了上千年,看尽了想到想不到的各种热闹。没想到,她却也成了别人眼里的热闹,在一群不靠谱参谋的参谋下,屡战屡败,屡败屡战本闲初心不改,这本立志要写回言情了!...

万古天帝

万古天帝

人族少年叶寒,身怀神秘功法天帝诀,入大世界中,与群雄争霸,观万族并起!天地苍茫,今朝我主沉浮!小说关键词万古天帝无弹窗万古天帝txt全集下载万古天帝最新章节阅读...

剑道第一仙

剑道第一仙

我是万古人间一剑修,诸天之上第一仙。...

每日热搜小说推荐